Lattice study on diquark properties

Zhaofeng Liu ¹

Institute of High Energy Physics, Beijing

June 24, 2014

¹with Yujiang Bi, Ying Chen, Ming Gong

Outline

- Motivation
- Lattice set up
- Preliminary results
- Summary

Motivation

- A diquark is a two-quark correlation in a hadron containing more than two quarks.
- In some models, a diquark is considered as a bound state from two quarks and is treated as a confined particle (color non-singlet).

Motivation

- A diquark is a two-quark correlation in a hadron containing more than two quarks.
- In some models, a diquark is considered as a bound state from two quarks and is treated as a confined particle (color non-singlet).
- Correlations among quarks can tell us inter-quark interactions.
- Diquarks are used to explain the structures of exotic states such as tetraquark states.
- Diquarks are used to explain some features of excited baryon spectrum.
- ullet Both one-gluon exchange and instanton models suggest attraction in the color antitriplet 0^+ diquark state.

Jaffe, hep-ph/0409065

What we are doing

- Information of diquarks from lattice QCD.
- Diquarks are not color singlets.
- We calculate diquark 2-point correlators in the Landau gauge and extract effective "masses".
- ullet The calculation is for diquarks with quantum numbers $J^P=0^+,1^+.$
- Quark "masses" are also obtained in the Landau gauge for comparison from

$$G(t) = \sum_{\vec{x}} \langle \Omega | T \psi_{\alpha}^{a}(x) \bar{\psi}_{\alpha}^{a}(0) | \Omega \rangle.$$

 Mass difference may give some information of the strength of diquark correlation.

Interpolating fields

Table: Currents and correlation functions. A trace is performed in color space

J ^P (diquark)	Current	Correlator
0^+ (good,scalar)	$J_c^5 = \epsilon_{abc}[q_1^a C \gamma_5 q_2^b]$	$\sum_{ec{x}}\langle\Omega TJ_c^5(x)ar{J}_c^5(0) \Omega angle$
$0^+(good,scalar)$	$J_c^{05} = \epsilon_{abc}[q_1^a C \gamma_0 \gamma_5 q_2^b]$	$\sum_{ec{x}}\langle\Omega TJ_c^{05}(x)ar{J}_c^{05}(0) \Omega angle$
1 ⁺ (bad,vector)	$J_c^i = \epsilon_{abc}[q_1^a C \gamma_i q_2^b]$	$\frac{1}{3}\sum_{i}\sum_{\vec{x}}\langle\Omega TJ_{c}^{i}(x)\bar{J}_{c}^{i}(0) \Omega\rangle$

- $q_1 = u, q_2 = d$
- $q_1 = u, q_2 = s$
- $m_u = m_d$ is varied to examine the quark mass dependence.

Lattice setup

Table: Parameters of configurations with 2+1 flavor dynamical domain wall fermions (RBC-UKQCD). [Aoki et al. 2011]

1/a(GeV)	label	am _{sea}	volume	N_{conf}
1.73(3)	c005	0.005/0.04	$24^{3} \times 64$	92
	c01	0.01/0.04	$24^3 \times 64$	88
2.28(3)	f004	0.004/0.03	$32^{3} \times 64$	50

- Seven overlap valence quark masses are used on each lattice.
- $am_q = 0.0135, 0.0243, 0.0489, 0.067(am_s), 0.15, 0.33, 0.67$ on the coarse lattices.
- $am_q = 0.00677, 0.0129, 0.024, \frac{0.047(am_s)}{0.047(am_s)}, 0.18, 0.28, 0.5$ on the fine lattice.
- Point source quark propagators. Statistical errors are from bootstraps.

Quark propagators in Landau gauge

- An example of $G(t) = \sum_{\vec{x}} \langle \Omega | T \psi_{\alpha}^{a}(x) \bar{\psi}_{\alpha}^{a}(0) | \Omega \rangle$
- A single exponential fit in $t \in [13, 32]$ gives "mass" $aM_q = 0.276(33)$.
- $M_{eff} = \ln(C(t)/C(t+1))$

Quark masses

- A linear extrapolation to the valence quark chiral limit gives $aM_q=0.262(23)$ for ensemble c005 (using the lowest five masses).
- Using 1/a = 1.73(3) GeV and 1/a = 2.28(3) GeV, one gets $M_q = 0.453(41), 0.405(37)$ and 0.435(24) GeV on ensembles c005, c01 and f004 respectively.

Scalar diquark from J^5 with $q_1 = u, q_2 = d$

- A single exponential fit gives $aM_{0^+} = 0.598(45)$.
- The result 0.625(62) from J^{05} is in agreement.

Scalar diquark from J^5 with $q_1 = u, q_2 = d$

- A linear extrapolation to the valence quark chiral limit gives $aM_{0^+}=0.453(39)$ for ensemble c005 (using the lowest five masses).
- Using the lattice spacings, one gets $M_{0^+}=0.784(69),0.879(64)$ and 0.780(56) GeV on ensembles c005, c01 and f004 respectively.

Mass difference between scalar diquark and quark

- The diquark-quark mass difference reflects the strength of the diquark correlation.
- $M_{0^+} M_q = ?$ (~ 310 MeV expected, Jaffe, hep-ph/0409065) c005: 0.784(69) 0.453(41) = 0.331(80) GeV c01: 0.879(64) 0.405(37) = 0.474(74) GeV f004: 0.780(56) 0.435(24) = 0.345(61) GeV
- $M_{0^+} 2M_q < 0$ except for c01

Bad diquark with $q_1 = u, q_2 = d$

- Left graph: The mass indicated by the red line is from a single exponential fit to the 2-point correlator.
- Right graph: A linear extrapolation to the chiral limit with the lowest five data points.

Mass difference between scalar and vector diquarks

- The vector-scalar diquark mass difference also reflects the strength of the diquark correlation.
- $M_{1^+} M_{0^+} = ? (\sim 200 \text{ MeV expected})$ c005: 1.045(35) - 0.784(69) = 0.261(77) GeV c01: 0.990(39) - 0.879(64) = 0.111(75) GeV f004: 1.021(28) - 0.780(56) = 0.241(63) GeV
- Sea guark mass dependence? Systematic error from the chiral extrapolation?

Diquarks with $\overline{q_1 = u, q_2 = s}$

• $am_s = 0.067, 0.047$ on the coarse and fine lattice respectively, which agree with the physical strange quark mass within error bar. [arXiv:1401.1487]

Scalar diquark and strange quark mass difference

- $M_{0^+} M_s = ?$ (~ 500 MeV expected) c005: 0.931(58) - 0.585(36) = 0.346(68) GeV c01: 0.981(55) - 0.590(34) = 0.391(65) GeV f004: 0.930(43) - 0.540(20) = 0.390(47) GeV
- Seems to be bigger than $M_{0^+}-M_q$, but the stat. error is large.

Vector and scalar diquark mass difference $(q_1=u,q_2=s)$

- $M_{1^+} M_{0^+} = ? (\sim 150 \text{ MeV expected})$ c005: 1.171(29) - 0.931(58) = 0.240(65) GeV c01: 1.040(47) - 0.981(55) = 0.059(72) GeVf004: 1.131(25) - 0.930(43) = 0.201(50) GeV
- Sea quark mass dependence? systematic error?

Summary

- ullet Two point functions of quark and diquarks ($J^P=0^+,1^+$) are calculated in the Landau gauge with dynamical configurations (DWF).
- The mass difference between scalar diquark and quark is obtained.
- The vector and scalar diquark mass difference is also obtained.

Summary

- ullet Two point functions of quark and diquarks $(J^P=0^+,1^+)$ are calculated in the Landau gauge with dynamical configurations (DWF).
- The mass difference between scalar diquark and quark is obtained.
- The vector and scalar diquark mass difference is also obtained.
- The calculation is done on three ensembles. Discretization error seems to be small. There might be sea quark mass dependence in the vector scalar diquark mass difference.
- Systematic error from the simple linear chiral extrapolation?
- More statistics/ensembles are needed. Gauge dependence (Coulomb gauge)?
- Information of diquarks from other approaches on the lattice are also needed.....

Summary

- ullet Two point functions of quark and diquarks $(J^P=0^+,1^+)$ are calculated in the Landau gauge with dynamical configurations (DWF).
- The mass difference between scalar diquark and quark is obtained.
- The vector and scalar diquark mass difference is also obtained.
- The calculation is done on three ensembles. Discretization error seems to be small. There might be sea quark mass dependence in the vector scalar diquark mass difference.
- Systematic error from the simple linear chiral extrapolation?
- More statistics/ensembles are needed. Gauge dependence (Coulomb gauge)?
- Information of diquarks from other approaches on the lattice are also needed.....

Thank you!